renault LOGAN

Применение полимерных материалов в автомобилестроении


Современное автомобилестроение немыслимо без широкого применения полимерных материалов, которые позволяют снизить массу автомобилей, уменьшить трудоемкость их изготовления, материалоемкость, повысить надежность и безопасность, улучшить комфортабельность, повысить их конкурентоспособность. Применение полимерных материалов в автомобилях постоянно возрастает, особенно в развитых промышленных странах у наиболее успешных фирм, выпускающих обычные и специальные автомобили.

Полиуретаны, поливинилхлориды, полипропилены, полиэтилены и другие полимеры в чистом виде, а также в виде композиций и такие полимерные композиционные материалы (ПКМ), как стеклопластики, углепластики, органопластики и базальтопластики, находят применение в кузовах, несущих системах, элементах трансмиссий, ходовых частей и в силовой установке. На рис. 1 показаны возможности применения неармированных и армированных полимерных материалов в конструкции современного автомобиля.

В нагруженных элементах автомобилей (панелях кузовов, кабин и корпусов, упругих элементах систем подрессоривания, карданных валов, ободьев колес и других) широко применяются ПКМ. У нас в стране многоосные колесные машины высокой проходимости с элементами из ПКМ выпускались много лет и по количеству и массе используемых в них деталей из ПКМ не имеют себе равных в мире. Кафедра «Колесные машины» принимала активное участие в их создании. На рис. 2 представлена серийная колесная машина ЗИЛ-БАЗ-135 с кабиной, мотоотсеком и оперением из ПКМ, а на рис. 3 - плавающая колесная машина ЗИЛ-1Э5П с несущим (безрамным) корпусом из ПКМ (впервые в мире). Опыт создания из ПКМ многочисленных объектов (корпуса, кузова, рамы, кабины, рессоры, топливные баки, ободья колес и т. д.) показывают широкие возможности применения ПКМ в колесных машинах. Руководителями этих работ являлись профессор Цыбин B.C. и авторы данного учебного пособия.

пластмассовые полимерные детали автомобиля

Рис. 1. Возможности применения полимерных материалов в легковом автомобиле среднего класса:

1 - стекло двери; 2 - зеркало наружное; 3 - брус пояса жесткости; 4 - дверь; 5 - внутренняя панель двери; 6 - капот; 7 - внутреннее зеркало; в - стеклоочиститель; 9 - прозрачная крышка вентиляционного люка; 10- крыша; 11,51 - спойлеры; 12 - крышка багажника; 13 - обтекатель; 14 - задние фонари; 15, 18 - детали задней панели кузова; 16, 52 - бамперы; 17, 25, 47 - противокоррозионные накладки; 19, 58 - крылья; 20 - топливный бак; 21 - рессора подвески; 22 - амортизатор подвески; 23 - грязезащитный фартук; 24 - подголовник; 26 - спинка сиденья; 28 - подушка сиденья; 30 - панель приборов; 31 - кожух рулевой колонки; 32 - рулевое колесо; 33 - кожух тоннеля пола; 34 - труба карданного вала; 35 - цилиндры гидроприводов; 36 - петля двери; 37 - картер сцепления и коробки передач; 38 - пружина подвески; 39 - шина; 40 - диск колеса; 41 - декоративный колпак; 42 - противокоррозионный вкладыш крыла; 43 - вал привода переднего колеса; 44 - рычаг независимой подвески колес; 45 - стабилизатор поперечной устойчивости; 46 - амортизатор бампера; 48 - противотуманная фара; 49 - блок-фара; 50 - рассеиватель блок-фары; 53 - передняя панель кузова; 54 - привод газораспределительного механизма; 55 - толкатели двигателя с нижним распределительным валом; 56 - корпус и крышка аккумулятора; 57 - корпус воздушного фильтра; 59 - впускной коллектор; 60 - шатуны; 61 - расширительный бачок; 62 - бачок омывателя

Рис. 2. Колесная машина ЗИЛ-БАЗ-135 с кабиной, облицовкой мотоотсека и оперением из полимерных композиционных материалов

Рис. 3. Плавающая колесная машина ЭИЛ-135П с несущим (безрамным) корпусом из полимерных композиционных материалов

Интерес к ПКМ чрезвычайно велик благодаря неисчерпаемой возможности вариаций их составов, многообразию полимеров и наполнителей, способам их модификации и взаимораспределения. Диапазоны физико-механических характеристик часто измеряются несколькими порядками величин, что наблюдается даже в пределах основной группы ПКМ - армированных пластиков (АП):

Плотность р, кг-м"3....................................................................................от 900 до 2200

Прочность при растяжении МПа от 1 до 1000

Модуль упругости при растяжении , ГПа..................от 0,01 до 1000

Коэффициент Пуассона v......................................................................от 0,15 до 0,5

Удельная ударная вязкость ..............................от 2,5 до 500

Температура эксплуатации °С................................................от -270 до 400

Коэффициент теплопроводности ....................от 0,8 до 1000

Удельное объемное электросопротивление .... от 10~2 до 1019

Диэлектрическая проницаемость ..............................................от 2 до 10

Тангенс угла диэлектрических потерь................ ................................от 1 до 1000

Твердость НВ, МПа....................................................................................от 10 до 500

Фундаментальным принципом создания изделий из АП является разработка одновременно конструкции самого изделия и состава, структуры АП в зависимости от факторов внешнего воздействия на изделие (вид нагружения, уровень нагрузки, воздействие температуры, влаги и других факторов). Именно возможность каждый раз создавать (конструировать) АП, варьируя компоненты по свойствам, взаимодействию, схемам распределения, сделала правомерным употребление понятия «конструирование» в отношении АП.

Принципиальное отличие такого конструирования от традиционного конструирования деталей и сборочных единиц заключается в том, что создателям АП приходится оперировать понятиями и величинами, принятыми в микромеханике материалов. Составными частями этого уровня являются армирующие наполнители, микронные соединительные слои матрицы, межфазные области и включения, невидимые невооруженным глазом, в виде пор, трещин, инородных фрагментов.

В учебном пособии излагаются основные положения создания нагруженных элементов конструкций колесных машин с применением АП.

Композиционные материалы

Основные понятия и определения

Ведущее положение среди композиционных материалов на основе синтетических полимеров занимают АП.

В науке о ПКМ (теоретическая систематизация, вывод общих закономерностей, математическое описание) еще кет строгого опреде-

Литье без давления различают и по механизму реакции полимеризации: радикальному, ионному или координационно-ионному. Все зависит от типа применяемого мономера, природы активного центра и механизма роста цепи. Практическими трудностями этого метода являются чувствительность полимеризационных смесей к ничтожным примесям различных веществ, разрушающих активные центры полимеризации.

К числу наиболее перспективных материалов, перерабатываемых данным методом, относятся полиамиды, поликрилаты, эфиры целлюлозы, полимеры аллиловых соединений и др.

При замешивании композиций для холодной полимеризации вводят растворенную в порции мономера навеску активатора, что обеспечивает отверждение изделий без подвода внешнего тепла. После этого непосредственно в форме протекают процессы набухания и растворения полимерных частиц, полимеризация мономера и формование изделия.

При выборе материала форм большое значение имеют условия протекания процесса полимеризации (холодная или горячая полимеризация). Для осуществления горячей полимеризации (140 °С) применяют формы из алюминиевых сплавов, для холодной (80 °С) формы из пластмасс, гипса, цемента, листового стекла, фанеры, картона. При изготовлении небольших изделий серийного и массового производств используют формы из стали или медных сплавов с обязательным хромированием и полировкой рабочих поверхностей. Особенностью форм из пластмасс является тот факт, что они могут быть жесткими или эластичными (с жестким ограждением).

Формы для получения сложных по конфигурации изделий делают разборными (при серийном производстве) или цельными разового использования (при единичном производстве).