renault LOGAN

Резистор


Самый простой и распространенный элемент — это сопротивление (резистор).

На первый взгляд абсолютно бесполезный элемент, ничего не делает, кроме потребления электроэнергии. Но только на основе резистора можно создавать некоторые полезные устройства.

Например, требуется подключить светодиод к источнику постоянного напряжения +12 В. Если сделать это напрямую (анод — на +12 В, катод — на массу), то, согласно закону Ома, в силу малого сопротивления диода в прямом направлении и фиксированного напряжения ток может достичь больших значений. Светодиод, как правило, рассчитан на малый ток, поэтому он моментально сгорит. Чтобы этого не произошло, в цепь «источник — светодиод» добавляем сопротивление рассчитанного номинала. Часть «лишней» энергии будет рассеиваться на этом сопротивлении и через светодиод пойдет ток необходимой величины.

Рисунок 12. Рассеивание энергии сопротивлением

На принципиальных электрических схемах постоянные резисторы принято показывать в виде прямоугольников или зигзагообразных линий (на зарубежных схемах).

Рисунок 13. Обозначение резисторов

Резистор характеризуется двумя основными параметрами — это величина сопротивления и рассеиваемая мощность.

Как уже упоминалось ранее, величина сопротивления резистора измеряется в

Омах и показывает насколько трудно току будет через него проходить. Этот параметр обязательно указывается на корпусе резистора.

Для унификации все производители договорились выпускать резисторы строго определенных номиналов, называемых рядами. Так, например, есть номинальный ряд Е12, который содержит следующие 12 чисел:

Таблица 10. Номиналы резисторов

1 1,2 1,5 1,8

2,2

2,7

3,3 3,9 4,7

5,6 6,8

8,2

Это означает, что величина сопротивления резисторов, соответствующих этому ряду, может быть, например, 2,7 Ом или 2,7 кОм, но сопротивления с номиналом 3 Ом в этом ряду быть не может. Поэтому, если при расчете добавочного сопротивления получается величина не кратная ни одному из значений ряда, ее приравнивают к ближайшему значению из стандартного ряда.

Рисунок 14. Внешний вид резистора

Величина сопротивления может быть нанесена на его корпус в виде цифры. Если единица измерения не указана, то считается, что это Ом. Если после цифры стоит буква «к» — сопротивление в килоомах (тысячах Ом), если буква «М» — мегаомы. То есть надпись «150» следует читать как «150 Ом», «2к4» — «2,4 килоома» и так далее. Так же на корпус импортных резисторов малого размера вместо цифробуквенной маркировки могут быть нанесены цветовые полосы. В них зашифрован номинал резистора.

Рисунок 15. Расшифровка обозначения резисторов

Резисторы, изображенные выше, имеют проволочные выводы, вставляемые в отверстия на печатных платах. Такой тип монтажа получил название «навесного».

В современных сигнализациях используют так называемые чип-резисторы для поверхностного монтажа по SMD-технологии (от surface mounted device — прибор, монтируемый на поверхность). Эта технология является наиболее распространенным на сегодняшний день методом конструирования и сборки электронных узлов на печатных платах. SMD-резисторы — очень маленькие радиодетали, рассмотреть которые, а тем более припаять, весьма сложно.

Рисунок 16. SMD-резистор

Для них используется специальная система маркировки. На корпусе пишется число (например, 100), последняя цифра которого указывает количество ноликов, которые нужно дописать после первых двух цифр из маркировки, чтобы получилось сопротивление в Омах. Таким образом, маркировка чип-резистора «100» может быть расшифрована как 10 Ом.

Второй важный параметр резистора — это номинальная мощность. При прохождении тока происходит нагрев резистора. Наибольшая мощность, которую резистор может рассеивать в заданных условиях — это номинальная мощность. Чем больше тепла резистор способен рассеивать не сгорая, тем выше этот параметр. Мощность измеряется в Ваттах. На принципиальных электрических схемах мощность указывается непосредственно на условном изображении резистора.

Рисунок 17. Обозначение мощности рассеивания резистора на схеме

На реальном резисторе мощность указывается только на крупных корпусах. Если этот параметр отсутствует, то мощность определяют по размеру резистора.

Рисунок 18. Резисторы разной мощности

В случае неверно подобранной мощности резистор может сгореть. Это произойдет, если Вы примените резистор с мощностью меньшей, чем он может выдержать.

Рисунок 19. Сгоревший резистор

Неправильно выбранная мощность резистора приводит к его сгоранию!

Однако, можно использовать резисторы заведомо большей мощности, чем необходимо для конкретного случая. Но при этом он будет дороже и займет больше места, что тоже не всегда удобно. Следовательно, важно правильно выбирать резисторы по данному параметру. Для большинства слаботочных цепей достаточно резисторов мощностью 0,125 — 0,25 Вт Для силовых цепей (например, имитация исполнительного механизма при «хитрой» блокировке) нужно выбирать резисторы большей мощности.

Бывает, что под рукой не оказывается резистора нужного номинала или необходимой мощности. Что делать в такой ситуации? Можно создать резистор самому! Разумеется, речь идет о соединении определенным образом нескольких заводских резисторов для получения требуемых характеристик.

Резисторы могут соединяться последовательно или параллельно.

Рисунок 20. Последовательное (А) и параллельное (Б) соединение резисторов

При последовательном соединении суммарное сопротивление цепочки резисторов увеличивается, при параллельном — уменьшается.

Параллельное соединение позволяет использовать отдельные резисторы малой мощности для создания одного более мощного резистора.

Так, если соединить параллельно 2 резистора номиналом 50 Ом и мощностью 0,25 Вт, то итоговое сопротивление станет равным 25 Ом, а итоговая мощность равна 0,5 Вт.

Обращаем внимание, что следует избегать использования этого приема в повседневной практике. Всегда лучше и надежнее использовать один заводской резистор с подходящими характеристиками.

Рисунок 21. Схема-подсказка "Резистор"









 Установка автосигнализаций

Постоянный ток
Переменный ток
Резистор
Конденсатор
Индуктивность
Диод
Биполярный транзистор
Реле
Колебательный контур
Устройство автосигнализации
Типовая двухсторонняя сигнализация
Радиоуправление автосигнализациями
Алгоритмы шифрования
Режимы работы сигнализации
Создание охранного комплекса
Применение устройств сигнализации
Монтаж проводки
Установка элементов автосигнализации
Методы монтажа
Инструмент для монтажа
Контрольное оборудование
Правила безопасности при установке